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Abstract

Capillary instability of a viscous fluid cylinder of diameter D surrounded by another fluid is determined
by a Reynolds number J ¼ VDql=ll, a viscosity ratio m ¼ la=ll and a density ratio ‘ ¼ qa=ql. Here V ¼ c=ll

is the capillary collapse velocity based on the more viscous liquid which may be inside or outside the fluid
cylinder. Results of linearized analysis based on potential flow of a viscous and inviscid fluid are compared
with the unapproximated normal mode analysis of the linearized Navier–Stokes equations. The growth
rates for the inviscid fluid are largest, the growth rates of the fully viscous problem are smallest and those of
viscous potential flow are between. We find that the results from all three theories converge when J is large
with reasonable agreement between viscous potential and fully viscous flow with J > Oð10Þ. The conver-
gence results apply to two liquids as well as to liquid and gas.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Capillary instability of a liquid cylinder of mean radius R leading to capillary collapse can be
described as a neckdown due to surface tension c in which fluid is ejected from the throat of the
neck, leading to a smaller neck and greater neckdown capillary force as seen in the diagram in Fig. 1.

The dynamical theory of instability of a long cylindrical column of liquid of radius R under the
action of capillary force was given by Rayleigh (1879) following earlier work by Plateau (1873)
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who showed that a long cylinder of liquid is unstable to disturbances with wavelengths greater
than 2pR. Rayleigh showed that the effect of inertia is such that the wavelength k corresponding to
the mode of maximum instability is k ¼ 4:51� 2R, exceeding very considerably the circumference
of the cylinder. The idea that the wavelength associated with fastest growing growth rate would
become dominant and be observed in practice was first put forward by Rayleigh (1879). The
analysis of Rayleigh is based on potential flow of an inviscid liquid neglecting the effect of the
outside fluid. (Looking forward, we here note that it is possible and useful to do an analysis of this
problem based on the potential flow of a viscous fluid.)

An attempt to account for viscous effects was made by Rayleigh (1892) again neglecting the
effect of the surrounding fluid. One of the effects considered is meant to account for the forward
motion of an inviscid fluid with a resistance proportional to velocity. The effect of viscosity is
treated in the special case in which the viscosity is so great that inertia may be neglected. He shows
that the wavelength for maximum growth is very large, strictly infinite. He says, ‘‘. . . long threads
do not tend to divide themselves into drops at mutual distances comparable to with the diameter
of the cylinder, but rather to give way by attenuation at few and distant places’’.

Weber (1931) extended Rayleigh’s theory by considering an effect of viscosity and that of
surrounding air on the stability of a columnar jet. He showed that viscosity does not alter the
value of the cut-off wavenumber predicted by the inviscid theory and that the influence of the
ambient air is not significant if the forward speed of the jet is small. Indeed the effects of
the ambient fluid, which can be liquid or gas, might be significant in various circumstances. The
problem, yet to be considered for liquid jets, is the superposition of Kelvin–Helmholtz and
capillary instability.

Tomotika (1935) considered the stability to axisymmetric disturbances of a long cylindrical
column of viscous liquid in another viscous fluid under the supposition that the fluids are not
driven to move relative to one another. He derived the dispersion relation for the fully viscous case
(his (33), our (2.17)) he solved it only under the assumption that the time derivative in the
equation of motion can be neglected but the time derivative in the kinematic condition is taken
into account (his (34)). This approximation leads herein to the asymptotic solution in the limit of
J ! 0, in which the wavenumber giving maximum instability, say km in our notation, depends
only upon the viscosity ratio m ¼ la=ll, where ll is the viscosity of liquid in another fluid of
viscosity la; km takes a maximum as kmR ¼ 0:589 at m�1 ¼ 0:28 (which gives the critical
mc ¼ 3:57), while km is reduced to zero as m ! 0 (single fluid column of high viscosity studied by
Rayleigh (1892)) and m ! 1 (single hollow in a fluid of high viscosity), as shown in his Fig. 2.

Fig. 1. Capillary instability. The force c=r forces fluid from the throat, decreasing r leading to collapse.
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The parameter ‘ is important for J ! 1 as is shown in Fig. 16, but not for small J (Stokes flow);
inertia is not important as J ! 0.

The effect of viscosity on the stability of a liquid cylinder when the surrounding fluid is ne-
glected and on a hollow (dynamically passive) cylinder in a viscous liquid was treated briefly by
Chandrasekhar (1961). The parameter cRql=l

2
l which can be identified as a Reynolds number

based on a velocity c=ll appears in the dispersion relation derived there.
Tomotika’s problem was studied by Lee and Flumerfelt (1981) without making the approxi-

mations used by Tomotika, focusing on the elucidation of various limiting cases defined in terms
of three dimensionless parameters, a density ratio, a viscosity ratio and the Ohnesorge number
Oh ¼

ffiffiffiffiffiffiffiffiffi
qcD

p
=ll ¼ J 1=2. They showed for various values of Oh and a fixed value of the density ratio

that km is bounded below by Tomotika’s limiting case (Oh ! 0) and above by the inviscid case
(Oh ! 1) that is independent of m; refer to their Fig. 4.

In this paper we treat the general fully viscous problem considered by Tomotika. This problem
is resolved completely without approximation and is applied to 14 pairs of viscous fluids. Theories
based on viscous and inviscid potential flows (VPF, IPF) are constructed and compared with the
fully viscous (FVF) analysis and with each other.

It is perhaps necessary to call attention to the fact it is neither necessary or desirable to put the
viscosities to zero when considering potential flows. The Navier–Stokes equations are satisfied by
potential flow; the viscous term is identically zero when the vorticity is zero but the viscous stresses
are not zero (Joseph and Liao, 1994). It is not possible to satisfy the no-slip condition at a solid
boundary or the continuity of the tangential component of velocity and shear stress at a fluid–
fluid boundary when the velocity is given by a potential. The viscous stresses enter into the viscous
potential flow analysis of free surface problems through the normal stress balance (2.10) at the
interface. Viscous potential flow analysis gives good approximations to fully viscous flows in cases
where the shears from the gas flow are negligible; the Rayleigh–Plesset bubble is a potential flow
which satisfies the Navier–Stokes equations and all the interface conditions. Joseph et al. (1999)
constructed a viscous potential flow analysis of the Rayleigh–Taylor instability which can scarcely
be distinguished from the exact fully viscous analysis. Similar agreements were demonstrated for
viscoelastic fluids by Joseph et al. (2002). In a recent paper, Funada and Joseph (2001) analyzed
Kelvin–Helmholtz instability of a plane gas–liquid layer using viscous potential flow. This
problem is not amenable to analysis for the fully viscous case for several reasons identified in their
paper. The study leads to unexpected results which appear to agree with experiments.

The present problem of capillary instability can be fully resolved in the fully viscous and po-
tential flow cases and it allows us to precisely identify the limits in which different approximations
work well.

2. Governing equations and dimensionless parameters

The problem formulation for the capillary instability of a viscous cylinder in another viscous
fluid was formulated by Tomotika (1935). It is based on a normal mode analysis of the linearized
Navier–Stokes equations. Tomotika’s problem was resolved for many limiting cases by Lee and
Flumerfelt (1981); they also recognized that the solution was controlled by three dimensionless
parameters, m ¼ la=ll, ‘ ¼ qa=ql and a Reynolds number J ¼ VDql=ll where V ¼ c=ll. A brief
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review of the governing equations in dimensionless form is given below to facilitate comparison
with VPF and IPF. Consider the stability of a liquid cylinder of radius R (¼ D=2) with viscosity ll

and density ql surrounded by another fluid with viscosity la and density qa under capillary forces
generated by interfacial tension c. Our convention is that ll Pla. In the inverse problem the
viscous liquid is outside. The analysis is done in cylindrical coordinates ðr; h; zÞ and only axi-
symmetric disturbances independent of h are considered.

The governing Navier–Stokes equations and interface conditions for disturbance of the cylinder
at rest are made dimensionless with the following scales

½length; velocity; time; pressure
 ¼ ½D;U ;D=U ; p0


where

p0 ¼ qlU
2; U ¼

ffiffiffiffiffiffiffiffi
c

qlD

r
: ð2:1Þ

2.1. Linearized disturbance equations

The system of equations for small disturbances are given by

oul
or

þ ul
r
þ owl

oz
¼ 0; ð2:2Þ

oul
ot

¼ � opl
or

þ 1ffiffiffi
J

p r2ul
�

� ul
r2

�
; ð2:3Þ

owl

ot
¼ � opl

oz
þ 1ffiffiffi

J
p r2wl; ð2:4Þ

oua
or

þ ua
r
þ owa

oz
¼ 0; ð2:5Þ

‘
oua
ot

¼ � opa
or

þ mffiffiffi
J

p r2ua
�

� ua
r2

�
; ð2:6Þ

‘
owa

ot
¼ � opa

oz
þ mffiffiffi

J
p r2wa; ð2:7Þ

with

r2 ¼ o2

or2
þ 1

r
o

or
þ o2

oz2
: ð2:8Þ

The kinematic condition at the interface r ¼ 1=2þ g  1=2 (where g is the varicose displacement)
is given by

og
ot

¼ ul;
og
ot

¼ ua: ð2:9Þ

The normal stress balance at the interface is given by
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pa � pl þ
2ffiffiffi
J

p oul
or

� 2mffiffiffi
J

p oua
or

¼ o2g
oz2

þ g
R2

: ð2:10Þ

The velocity normal to the interface and the velocity tangential to the interface are continuous as

ul ¼ ua; wl ¼ wa: ð2:11Þ
The tangential stress balance at the interface is given by

oul
oz

�
þ owl

or

�
¼ m

oua
oz

�
þ owa

or

�
: ð2:12Þ

2.2. Dispersion relation for fully viscous flow (FVF)

Following Tomotika, the velocities are expressed with a stream function wðr; z; tÞ:

u ¼ 1

r
ow
oz

; w ¼ � 1

r
ow
or

; ð2:13Þ

and the basic variables are expressed in normal modes:

wl ¼ A1rI1ðkrÞ½ þ A2rI1ðklrÞ
 expðrt þ ıkzÞ þ c:c:; ð2:14Þ
wa ¼ B1rK1ðkrÞ½ þ B2rK1ðkarÞ
 expðrt þ ıkzÞ þ c:c:; ð2:15Þ
g ¼ H expðrt þ ıkzÞ þ c:c:; ð2:16Þ

where r is the complex growth rate and k is the wavenumber; the modified Bessel functions of the
first order are denoted by I1 for the first kind and K1 for the second kind. Substitution of (2.14)–
(2.16) into (2.11), (2.12) and (2.10) leads to the solvability condition, which is given as the dis-
persion relation:

I1ðkRÞ I1ðklRÞ K1ðkRÞ K1ðkaRÞ
kI0ðkRÞ klI0ðklRÞ �kK0ðkRÞ �kaK0ðkaRÞ
2k2I1ðkRÞ k2 þ k2l

� �
I1ðklRÞ 2mk2K1ðkRÞ m k2 þ k2a

� �
K1ðkaRÞ

F1 F2 F3 F4

								

								
¼ 0; ð2:17Þ

where

F1 ¼ ırI0ðkRÞ þ 2ı
k2ffiffiffi
J

p dI1ðkRÞ
dðkRÞ

� �
� 1

R2

�
� k2

�
ı
k
r
I1ðkRÞ; ð2:18Þ

F2 ¼ 2ı
kklffiffiffi
J

p dI1ðklRÞ
dðklRÞ

� �
� 1

R2

�
� k2

�
ı
k
r
I1ðklRÞ; ð2:19Þ

F3 ¼ �ı‘rK0ðkRÞ þ 2ı
mk2ffiffiffi
J

p dK1ðkRÞ
dðkRÞ

� �
; F4 ¼ 2ı

mkkaffiffiffi
J

p dK1ðkaRÞ
dðkaRÞ

� �
; ð2:20Þ

with

kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

ffiffiffi
J

p
r

q
; ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘

m

ffiffiffi
J

p
r

r
: ð2:21Þ

T. Funada, D.D. Joseph / International Journal of Multiphase Flow 28 (2002) 1459–1478 1463



For small
ffiffiffi
J

p
, kl and ka may be expanded around k up to the first order terms, which yields the

expansion of (2.17)–(2.20) and the resultant dispersion relation is Eq. (34) in Tomotika’s paper;
that is, r ¼ (a function of k and m) �

ffiffiffi
J

p
.

2.3. More viscous fluid outside

The equations are the same except that subscripts ‘l’ and ‘a’ are interchanged, m, ‘, J are re-
placed with m0, ‘0, J 0;

m0
�

¼ 1

m
; ‘0 ¼ 1

‘
; J 0 ¼ qaDc

l2
a

�
: ð2:22Þ

The capillary collapse is still controlled by the more viscous fluid V ¼ c=ll where ll is now the
viscosity of the surrounding fluid. We shall index all our results with m, ‘, J.

2.4. Dispersion relation for viscous potential flow (VPF)

The equations are the same as in Section 2.1 except that u ¼ r/, r2/ ¼ 0 and the viscous
terms on the right side of (2.3), (2.4), (2.6) and (2.7) are zero. The latter condition in (2.11) and the
condition (2.12) which enforce a no-slip condition cannot be enforced and are omitted in the
analysis of viscous potential flow.

By taking these into account in the linearized equations, the solutions are expressed as

wl ¼ A1rI1ðkrÞ expðrt þ ıkzÞ þ c:c:; ð2:23Þ

wa ¼ B1rK1ðkrÞ expðrt þ ıkzÞ þ c:c:; ð2:24Þ

g ¼ H expðrt þ ıkzÞ þ c:c:; ð2:25Þ

for which the dispersion relation is given by

ðal þ ‘aaÞr2 þ 2k2ffiffiffi
J

p ðbl þ mbaÞr ¼ 1

R2

�
� k2

�
k; ð2:26Þ

with

al ¼
I0ðkRÞ
I1ðkRÞ

; aa ¼
K0ðkRÞ
K1ðkRÞ

; bl ¼ al �
1

kR
; ba ¼ aa þ

1

kR
: ð2:27Þ

Solving (2.26), we get

r ¼ � k2 bl þ mbað Þffiffiffi
J

p
al þ ‘aað Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 bl þ mbað Þffiffiffi
J

p
al þ ‘aað Þ

" #2

þ 1

R2
� k2

� �
k

al þ ‘aað Þ

vuut : ð2:28Þ

Thus instability arises in 0 < kR < 1, for which the critical wavenumber is given by kc ¼ R�1 ¼ 2.
Viscous normal stresses are what produce the difference between IPF and VPF. This difference is
small when k is small and large for k near to one (see Figs. 2–8).

For large
ffiffiffi
J

p
, (2.28) reduces to
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r ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R2
� k2

� �
3k

al þ ‘aað Þ

s
; ð2:29Þ

which is just the solution in the IPF, giving for instability a maximum growth rate rm ¼ rðkmÞ
with the associated wavenumber km. When J is not too small, (2.28) reduces to (2.29) in the limit

Fig. 2. The growth rate r vs. k for case 1, mercury in air.

Fig. 3. The growth rate r vs. k for case 5, water in benzene.

Fig. 4. The growth rate r vs. k for case 8, glycerine in air.
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k ! 0; in this case the normal viscous stresses disappear and r of VPF has the same asymptotic
form as IPF.

For small
ffiffiffi
J

p
, (2.28) for instability is reduced to

r ¼ 1

2

1

R2

�
� k2

� ffiffiffi
J

p

k bl þ mbað Þ ; ð2:30Þ

Fig. 5. The growth rate r vs. k for case 11, SO10000 in air.

Fig. 6. The growth rate r vs. k for case 12, goldensyrup in BBoil.

Fig. 7. The growth rate r vs. k for case 14, tar pitch mixture in goldensyrup.

1466 T. Funada, D.D. Joseph / International Journal of Multiphase Flow 28 (2002) 1459–1478



which is another asymptotic solution in J ! 0 and is in good agreement with the curves of
maximum growth rate rm of VPF in Figs. 11–15. Therefore we find that VPF bridges two as-
ymptotic solutions, one is given by (2.29) when J ! 1 and the other is given by (2.30) in the limit
of J ! 0; the latter is not included in IPF. In the limit of k ! 0, (2.30) is then reduced to
r ¼

ffiffiffi
J

p
=ð1þ mÞ, which changes monotonically with increasing m. This aspect is different from

that of FVF (where km for small
ffiffiffi
J

p
has a maximum with respect to m and is reduced to 0 for

m ! 0 and m ! 1; refer to Tomotika (1935) and Lee and Flumerfelt (1981)).
Around the maximum growth rate, rm ¼ rðkmÞ and drm=dkm ¼ 0, we have an expansion of r:

rðkÞ ¼ rm þ 1

2

d2rm

dk2m
ðk � kmÞ2 þ � � � ; ð2:31Þ

thus rm, km and the curvature d2rm=dk2m may be used to compare the results of VPF, FVF and
IPF.

3. Growth rate curves, r vs. k

Growth rate curves were computed for 14 fluid pairs; ‘l’, ‘a’ are listed in Table 1.
In Table 2 we list the 28 values of dimensionless parameters needed to calculate growth rates for

fully viscous flow; 14 when the more viscous liquid is inside and an additional 14 when the more
viscous liquid is outside. Growth rate curves r vs. k for the 14 fluids listed in Table 1 are given in
Figs. 2–7. The inverse case, with the viscous fluid outside, is plotted in Fig. 8. There are three
curves in each figure belonging to fully viscous, viscous potential and IPF. The curves have a
universal order with the highest growth given by IPF and the lowest growth rates by FVF. Long
waves are more stable for FVF than VPF (especially when m is close to the critical; see Figs. 3,6–
8), but the peak values are very close (see Fig. 7, where d2rmV=dk2mV

		 		 is small).
Table 3 lists the maximum growth rate and the wavenumber of maximum growth for fully

viscous and viscous potential flow. We measure the agreement by monitoring the ratio of max-
imum growth rates rmV=rmF and the ratio of the maximizing wavenumbers. The agreement is
good when these ratios are nearly one. Table 3 shows very good agreements for high Reynolds
numbers greater than Oð104Þ and reasonable agreement for Reynolds numbers greater than O(1).

Fig. 8. The growth rate r vs. k for case 15 (inverse), air in mercury; kmI ¼ kmV ¼ kmF ¼ 0:9696, rmI ¼ 2:319,
rmV ¼ 2:318, rmF ¼ 2:317, for which rmV=rmI ¼ 0:9996 and rmV=rmF ¼ 1:000.
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We call the readers attention to the fact that the agreements between fully viscous and viscous
potential flow are good when J is large, even the fluid when the pairs are two liquids. This result is
in apparent disagreement with the notion that such agreements are somehow associated with the

Table 2

Dimensionless parameters ‘ ¼ qa=ql, m ¼ la=ll and J ¼ qcD=l2 is a Reynolds number based on the maximum vis-

cosity, which is the viscosity ll listed in Table 1

No. ‘ m No. ‘ m J

1 8.889E�05 1.154E�02 15 1.125Eþ04 8.667Eþ01 2.674Eþ07

2 7.407E�02 6.410E�01 16 1.350Eþ01 1.560Eþ00 2.080Eþ07

3 1.200E�03 1.800E�02 17 8.333Eþ02 5.556Eþ01 7.280Eþ05

4 1.395E�03 2.769E�02 18 7.167Eþ02 3.611Eþ01 5.874Eþ05

5 8.600E�01 6.500E�01 19 1.163Eþ00 1.538Eþ00 3.280Eþ05

6 1.238E�03 1.800E�04 20 8.075Eþ02 5.556Eþ03 2.035Eþ01

7 1.074Eþ01 1.995E�03 21 9.311E�02 5.013Eþ02 7.708Eþ00

8 9.547E�04 2.302E�05 22 1.048Eþ03 4.344Eþ04 1.303Eþ00

9 1.478E�03 3.830E�05 23 6.768Eþ02 2.611Eþ04 1.188Eþ00

10 1.143Eþ00 3.091E�04 24 8.750E�01 3.235Eþ03 2.661E�03

11 1.238E�03 1.800E�06 25 8.075Eþ02 5.556Eþ05 2.035E�03

12 6.429E�01 5.455E�01 26 1.556Eþ00 1.833Eþ00 1.967E�03

13 6.071E�01 9.091E�01 27 1.647Eþ00 1.100Eþ00 9.256E�04

14 1.000Eþ00 5.500E�02 28 1.000Eþ00 1.818Eþ01 8.050E�06

Entries 15–28 are for cases in which ll and ql are for the outside fluid.

Table 1

Fluid pairs for study of capillary instability when the viscous fluid is inside

No. Material (fluid l–fluid a) ql (kgm
�3) ll (kg/m s) qa (kgm�3) la (kg/m s) c (N/m)

1 Mercury–air 13500 0.00156 1.2 1:8� 10�5 0.4821

2 Mercury–water 13500 0.00156 1000 0.001 0.375

3 Water–air 1000 0.001 1.2 1:8� 10�5 0.0728

4 Benzene–air 860 0.00065 1.2 1:8� 10�5 0.02886

5 Water–benzene 1000 0.001 860 0.00065 0.0328

6 SO100–air 969 0.1 1.2 1:8� 10�5 0.021

7 Glycerine–mercury 1257 0.782 13500 0.00156 0.375

8 Glycerine–air 1257 0.782 1.2 1:8� 10�5 0.0634

9 Oil–air 879.8 0.483 1.3 1.85�10�5 0.0315

10 Goldensyrup–CC4 and

paraffin

1400 11.0 1600 0.0034 0.023

11 SO10000–air 969 10.0 1.2 1:8� 10�5 0.021

12 Goldensyrup–BBoil 1400 11.0 900 6.0 0.017

13 Goldensyrup–Black

lubrication oil

1400 11.0 850 10.0 0.008

14 Tar pitch mixture–

goldensyrup

1400 200.0 1400 11.0 0.023

Density (kgm�3), viscosity (kg/m s) and interfacial tension (N/m). An additional 14 pairs numbered from 15–28 are

obtained by inverting 1–14 so that the viscous fluid is outside; for example, 15 is air–mercury. These 28 fluid pairs are

the data base for this paper.
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behavior of boundary layers at gas–liquid surfaces (see Section 6) and not with boundary layers at
liquid–liquid surfaces.

In Table 4 we give the growth rate ratios and associated wavenumber ratios for VPF and IPF.

4. Maximum growth rates and wavenumbers, rm and km vs.
ffiffiffi
J

p

The growth rate curves r vs. k depend only on three control parameters ‘, m and J. The di-
mensionless description allows for maximum generality. We show how rm and km from FVF vary
with

ffiffiffi
J

p
for different values of ‘ and m in Figs. 9 and 10.

Table 3

Maximum growth rate and the associated wavenumber ratios indexed by J; cases 1–14 are viscous fluid inside

No. J kmV rmV kmF rmF kmV=kmF rmV=rmF

1 2.6744Eþ07 1.3957Eþ00 9.7090E�01 1.3957Eþ00 9.7048E�01 1.0000Eþ00 1.0004Eþ00

2 2.0803Eþ07 1.3894Eþ00 9.6337E�01 1.3894Eþ00 9.5517E�01 1.0000Eþ00 1.0086Eþ00

3 2.0803Eþ07 1.3957Eþ00 9.6975E�01 1.3894Eþ00 9.6706E�01 1.0045Eþ00 1.0028Eþ00

4 7.2800Eþ05 1.3957Eþ00 9.6958E�01 1.3894Eþ00 9.6643E�01 1.0045Eþ00 1.0033Eþ00

5 5.8745Eþ05 1.3585Eþ00 8.9325E�01 1.3524Eþ00 8.4918E�01 1.0045Eþ00 1.0519Eþ00

6 3.2800Eþ05 1.2416Eþ00 7.8900E�01 1.0898Eþ00 5.9326E�01 1.1393Eþ00 1.3299Eþ00

7 3.1834Eþ04 1.0704Eþ00 4.7575E�01 9.9608E�01 3.4141E�01 1.0746Eþ00 1.3935Eþ00

8 2.0349Eþ01 9.8716E�01 5.1382E�01 7.4027E�01 2.7489E�01 1.3335Eþ00 1.8692Eþ00

9 1.3032Eþ00 9.7832E�01 5.0282E�01 7.3035E�01 2.6577E�01 1.3395Eþ00 1.8920Eþ00

10 1.1880Eþ00 2.9710E�01 4.8735E�02 2.7033E�01 1.6553E�02 1.0990Eþ00 2.9442Eþ00

11 4.2500E�03 2.7772E�01 4.2951E�02 1.7242E�01 1.4812E�02 1.6108Eþ00 2.8998Eþ00

12 2.0349E�03 2.0181E�01 2.7576E�02 1.0608Eþ00 4.3485E�03 1.9024E�01 6.3414Eþ00

13 6.8000E�04 1.4468E�01 1.5550E�02 1.1146Eþ00 2.2753E�03 1.2980E�01 6.8343Eþ00

14 8.0500E�06 6.7356E�02 2.6807E�03 7.1733E�01 6.4485E�04 9.3898E�02 4.1571Eþ00

The ratios are nearly one, indicating agreement between FVF and VPF when J is large.

Table 4

Maximum growth rate and wavenumber ratios for VPF and IPF when the viscous liquid is inside (No. 1–14)

No. kmI rmI kmV rmV kmV=kmI rmV=rmI

1 1.3957Eþ00 9.7110E�01 1.3957Eþ00 9.7090E�01 1.0000Eþ00 9.9979E�01

2 1.3894Eþ00 9.6377E�01 1.3894Eþ00 9.6337E�01 1.0000Eþ00 9.9958E�01

3 1.3957Eþ00 9.7099E�01 1.3957Eþ00 9.6975E�01 1.0000Eþ00 9.9873E�01

4 1.3957Eþ00 9.7097E�01 1.3957Eþ00 9.6958E�01 1.0000Eþ00 9.9857E�01

5 1.3585Eþ00 8.9590E�01 1.3585Eþ00 8.9325E�01 1.0000Eþ00 9.9704E�01

6 1.3957Eþ00 9.7098E�01 1.2416Eþ00 7.8900E�01 8.8965E�01 8.1258E�01

7 1.1924Eþ00 5.5735E�01 1.0704Eþ00 4.7575E�01 8.9769E�01 8.5361E�01

8 1.3957Eþ00 9.7101E�01 9.8716E�01 5.1382E�01 7.0731E�01 5.2916E�01

9 1.3957Eþ00 9.7096E�01 9.7832E�01 5.0282E�01 7.0098E�01 5.1786E�01

10 1.3463Eþ00 8.7508E�01 2.9710E�01 4.8735E�02 2.2067E�01 5.5692E�02

11 1.3957Eþ00 9.7098E�01 2.7772E�01 4.2951E�02 1.9899E�01 4.4235E�02

12 1.3646Eþ00 9.1304E�01 2.0181E�01 2.7576E�02 1.4788E�01 3.0202E�02

13 1.3708Eþ00 9.1596E�01 1.4468E�01 1.5550E�02 1.0554E�01 1.6977E�02

14 1.3524Eþ00 8.8539E�01 6.7356E�02 2.6807E�03 4.9804E�02 3.0277E�03
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For large
ffiffiffi
J

p
, the maximum growth rate in Fig. 9 depends only upon ‘ as expected just by IPF.

For small
ffiffiffi
J

p
, the maximum growth rate is proportional to

ffiffiffi
J

p
and is shifted by m, which is

evaluated by Tomotika’s (34). Eq. (2.17) includes these two asymptotic solutions.

Fig. 9. Maximum growth rate rm vs.
ffiffiffi
J

p
for various values of ‘ and m in the fully viscous case.

Fig. 10. Wavenumber km vs.
ffiffiffi
J

p
for the values of ‘ and m for FVF. The existence of a maximum value of km at values

of J near 1 for certain values of ‘ and m is noteworthy. For small
ffiffiffi
J

p
, km has a maximum with respect to m. For

large
ffiffiffi
J

p
, all theories collapse to IPF which does not depend on the viscosity ratio m but does depend on the density

ratio ‘.
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Corresponding to Fig. 9, km changes with
ffiffiffi
J

p
as in Fig. 10. For large

ffiffiffi
J

p
, km is evaluated by IPF

(0:96966 km 6 1:396, for which refer to (5.2) and (5.3) and Fig. 16(b)). For small
ffiffiffi
J

p
, km has a

maximum with respect to m and is reduced to 0 for m ! 0 and m ! 1; note that km ¼ 1:178 at
mc ¼ 3:57, thus 0 < km 6 1:178. The existence of a maximum value of km at values of J near 1 for
certain values of ‘ and m is noteworthy.

In Figs. 11–15 we plotted the peak values rm and the corresponding wavenumber km vs.
ffiffiffi
J

p
for

fixed values of ‘ and m which are given in Table 2. We can find the two asymptotic solutions, one
is given by IPF for large

ffiffiffi
J

p
and the other is given for small

ffiffiffi
J

p
; (2.30) for VPF and Tomotika’s

(34) for FVF. The maximum growth rate rm and km for IPF do not depend on J and m and appear
as the highest flat value. The smallest growth rate is for FVF.

Fig. 11. rm and km vs.
ffiffiffi
J

p
for values of ð‘;mÞ ¼ ð8:889� 10�5; 1:154� 10�2Þ for mercury in air.

T. Funada, D.D. Joseph / International Journal of Multiphase Flow 28 (2002) 1459–1478 1471



5. rmI vs. km for inviscid potential flow (IPF)

For IPF, the growth rate rI (based upon the time scale Tl ¼ D=Ul, Ul ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ðqlDÞ

p
, ‘ ¼ qa=ql

and R ¼ 1=2) is expressed as

rI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R2
� k2

� �
k

al þ ‘aað Þ

s
: ð5:1Þ

Fig. 12. rm and km vs.
ffiffiffi
J

p
for values of ð‘;mÞ ¼ ð8:600� 10�1; 6:500� 10�1Þ for water in benzene.
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For small ‘, this reduces to rI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1=R2Þ � k2Þðk=a‘Þ

p
, while for large ‘, it reduces to

rI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1=R2Þ � k2Þðk=‘aaÞ

p
. Thus, combination of the results shown in Fig. 16 leads to asymp-

totic forms of the maximum growth rate rmI:

rmI ¼
0:971 at kmI ¼ 1:39 for ‘ � 1;
2:319� ‘�1=2 at kmI ¼ 0:969 for ‘ � 1:

�
ð5:2Þ

If the fluid of density ql is outside and qa inside, then Ta ¼ D=Ua, ‘
0 ¼ 1=‘ and the subscript ‘a’ and

‘l’ are interchanged in (5.1), for which we find that

rmI ¼
2:319 at kmI ¼ 0:9696 for ‘0 � 1;
0:9711� ‘0

�1=2
at kmI ¼ 1:396 for ‘0 � 1:

�
ð5:3Þ

Fig. 13. rm and km vs.
ffiffiffi
J

p
for values of ð‘;mÞ ¼ ð1:238� 10�3; 1:800� 10�6Þ for SO10000 in air.
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The asymptotic form (5.2) and (5.3) are shown as dashed lines in Fig. 16. The cross point in Fig.
16(a) is given by ‘1=2 ¼ 2:319=0:971, which gives the critical value ‘c ¼ 5:70 (‘0c ¼ 1=‘c ¼ 0:175).
This may be used to evaluate rm, though the corresponding wavenumber km changes in the range
wider than 0:175 < ‘ < 5:70. It is stressed, however, that when J is large VPF has two structures
as in IPF.

6. Conclusions and discussion

We studied capillary instability of a fluid cylinder of viscosity ll in a fluid with viscosity la; the
fluids may be liquid or gas. The problem is completely characterized by three numbers: a viscosity

Fig. 14. rm and km vs.
ffiffiffi
J

p
for values of ð‘;mÞ ¼ ð1:000; 5:500� 10�2Þ for tar pitch mixture in goldensyrup.
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ratio m ¼ la=ll, a density ratio ‘ ¼ qa=ql and by a Reynolds number J ¼ q‘cD=l
2
l based on a

collapse velocity c=ll where ll and ql are for the more viscous of the two fluids. The goal of the
present study is to evaluate the utility of viscous potential flow as an approximation to the un-
approximated viscous problem introduced by Tomotika (1935) and studied for special cases by
Chandrasekhar (1961) and for limiting cases by Lee and Flumerfelt (1981). The effects of vorticity
and the continuity of the tangential component of velocity and stress cannot be enforced in the
frame of potential flow of a viscous fluid, but the extensional effects of viscous stresses on capillary
collapse are retained in the normal stress balance.

Fig. 15. rm and km vs.
ffiffiffi
J

p
for values of ð‘;mÞ ¼ ð1:125� 104; 8:667� 101Þ for air in mercury.
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Analysis of the viscous flow reveals the existence of finite maximum values of km, for certain
viscosity ratios, as J is increased (Figs. 9 and 10). We found that IPF emerges as a unique high
Reynolds limit (practically, with J > Oð10Þ) of both the fully viscous and viscous potential flow
analysis. The inviscid limit depends only on the density ratio ‘.

Comparisons of growth rate curves for fully viscous flow, viscous potential flow and IPF are
given in Figs. 2–8 for 7 of 28 fluid pairs. Comparisons of the maximum growth rate rm and as-
sociated wavenumber km as a function of

ffiffiffi
J

p
for different values of m and ‘ are presented in Figs.

11–15. From these figures we may conclude that the maximum growth rates and wavenumber for
IPF, viscous potential flow and fully viscous flow converge when J is large; for smaller J, the

Fig. 16. Maximum growth rate rmI and associated wave number for IPF: þþþ fluid ‘ is inside, ��� fluid is outside.

r is made dimensionless with Tl ¼ D=
ffiffiffiffiffiffiffiffiffiffiffiffi
c=qlD

p
when fluid ‘ is inside and with Tl ¼ D=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c=qaD

p
when it is outside. The

asymptotic forms (5.2) and (5.3) are marked with a dashed line and bold dashed line respectively.

1476 T. Funada, D.D. Joseph / International Journal of Multiphase Flow 28 (2002) 1459–1478



growth rates of IPF are greatest (and independent of J) and these fully viscous flows are smallest
and decrease with decreasing J. The growth rates of viscous potential flow track fully viscous flow
and lie between IPF and fully viscous flow. A similar behavior is exhibited by the associated
wavenumbers, with viscous potential flow giving the smallest km and IPF the largest km when

ffiffiffi
J

p
is

not too large.
It follows, from the comparisons just presented, that viscous potential flow is a much better

approximation of fully viscous flow than IPF for small J and no worse than IPF for all J. There is
absolutely no advantage to putting the viscosities to zero in the analysis of potential flow.

The convergence of fully viscous flow and viscous potential flow to IPF when the Reynolds
number J is large could have been anticipated from general fluid mechanical principles. On the
other hand, Harper (1972) has argued (see also Joseph and Liao, 1994, pp. 6 and 7) that the
success of the Levich (1949) potential flow approximation in calculating the drag on a rising
spherical bubble of gas is due to the nature of the boundary layer at a tangentially stress-free
surface. Presumably liquid–gas surfaces approximate such stress free conditions when the vis-
cosity contrast is large, but not at liquid–liquid surfaces like water and benzene in which the
viscosities are comparable.

Levich computed the drag by equating UrDr, where Ur is the rise velocity and Dr the drag, to the
viscous dissipation in the liquid as would be true for the steady drag on a solid. The approxi-
mation arises on both sides of the balance, on the left side––either by assuming that every part of
the boundary of the bubble moves with the same velocity Ur, or that the tangential component of
the traction vector vanishes at the bubble’s surface––and on the right, by evaluating the dissi-
pation integral on potential flow over a sphere (see Joseph et al., 1993).

Our calculations of capillary instability given here show that viscous potential flows approxi-
mate fully viscous liquid–liquid as well as gas–liquid flows in cases in which IPF fails dismally
provided only that J is not too small.
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